AD-A246 906 /j))
LR (V-

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

Data Compression using Artificial
Neural Networks

by
Bruce E. Watkins

September 1991

Thesis Advisor: Murali Tummaia
Approved for public release; distribution is unlimited

92-05014
LT

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

Form Approved

REPORT DOCUMENTATION PAGE OMB No 0704-0188

'a REPORT SECURITY CLASSIFICATION
Unclassified

b RESTRICTIVE MARKINGS

23 SECURITY CLASSIFICATION AUTHORITY

3 DISTRIBUTION/ AVAILABILITY OF REPORT
Approved for public release;

2b DECLASSIFICATION DOWNGRADING SCHEDULE

distribution is unlimited.

4 PERFORMING ORGANIZATION REPORT NUMBER(S)

S MONITORING ORGANIZATION REPORT NUMBER{(S)

6a NAME OF PERFORMING ORGANIZATION

Naval Postgraduate School

6b OFFICE SYMBOL
(if applicable)
Code 32

7a NAME OF MONITORING ORGANIZATION

Naval Postgraduate School

6c. ADDRESS (City, State, and ZIP Code)
Monterey, California 93943-5000

7b. ADDRESS (City, State, and ZIP Code)

Monterey, California 93943-5000

8a. NAME OF FUNDING /SPONSQRING
ORGANIZATION

8b OFFICE SYMBOL
(If applicable)

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8c. ADDRESS (City, State, and ZIP Code)

10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO NO NO ACCESSION NO

11 TITLE (Include Security Classification)

DATA COMPRESSION USING ARTIFICIAL NEURAL NETWORKS

12 PERSONAL AUTHOR(S) Watkins, Bruce E.
13a TYPE OF REPORT 13b TIME COVERED 14 DATE OF REPORT (Year, Month, Day) |15 PAGE COUNT
Engineer’s Thesis FROM 10 1991 September 93

16 SUPPHENEAR" eXPIATEY in this thesis are those of the author and do not reflect the official policy or position of the
Department of Defense or the U.S. Government.

17 COSATI CODES

FELD GROUP SUB-GROUP

18 SUBJECT TERMS (Cg{?\;{aue on_reverse if necessary, ang :dentify by block number)
cur

etworks, Vector Quantization,

Image Coding

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

This thesis investigates the application of artificial neural networks for the compression of image data.
An algorithm is developed using the competitive learning paradigm which takes advantage of the parallel
processing and classification capability of neural networks to produce an efficient implementation of vector
quantization. Multi-Stage, tree searched, and classification vector quantization codebook design are adapted to
the neural network design to reduce the computational cost and hardware requirements. The results show that
the new algorithm provides a substantial reduction in computational costs and an improvement in performance.

20 DISTRIBUTION / AVAILABILITY OF ABSTRACT
& uncLassiIFEDUNLUMITED [SAME As

RPT J bTIC USERS

21 ABSTRACT SECURITY CLASSIFICATION
Unclassified

22a NAME OF RESPONSIBLE INDIVIDUAL

Tummala, Murali

22b rELEPHo%%%seaCode) 22¢ (Q:’FdéE é“ﬁ%

DD Form 1473, JUN 86

Previous editions are obsolete SECURITY CLASSIFICATION OF THIS PAGE
S/N 0102-LF-014-6603 Unclassified

Approved for public release: uistribution is unlimited

Data Compression Using Artificial Neural Networks
by
Bruce E. Watkins
Lieutenant. USN

B.S. University of California, Santa Barbara. 1984

Submitted in partial fulfillment of the
requirements for the degree of

ELECTRICAL ENGINEER
from the
NAVAL POSTGRADUATE SCHOOL

September, 1991

Author: %M % m—mw

Bruce E. Watkins

Approved by: M/\A’Q_; T(AAMIQ&

Murali Tummala, Thesis Advisor

Chido). Thome.

Charles W. Therrien, Second Reader

Michael A. Morgan, Chairman
Department of Electrical and Computer Engineering

Log L

Richard S. Elster, Dean of Instruction

ii

ABSTRACT

This thesis investigates the application of artificial neural networks for the com-

pression of iinage data. An algorithm is developed using the competitive learning

varadigin which takes advantage of the parallel processing and clarsification capabil-

itv of neural networks to produce an efficient implementation of vector quantization.

Multi-Stage. tree searched, and classification vector quantization codebook design

techniques are adapted to the neural network design to reduce the computational

cost and hardware requirements. The results show that the new algorithm provides

a substantial reduction in computational costs and an improvement in performance.

i

Accession Por

NTIS cRA&f#
DTIC TAR 0
Unannounced Q

Justificntion... e ——

e At A BT | 1 I g ” e -_‘4

By e o a
\ Distribution/

- I

|__Availabtisty Cb;io%
Avell nnager |
Digt Spestead

TABLE OF CONTENTS

L INTRODUCTION . oo ot 1
A, THESISOBJECTIVE oo 6

B. THESIS OUTLINE oot 3

1. VECTOR QUANTIZATION oo 9
A, INTRODUCTION . .o oo e 9

B. DETAILS OF THE METHODo .. 9

[II. NEURAL NETWORKS . . o oo o oo 17
A, INTRODUCTION .« o oot i 17

B. NEURAL NETWORK LEARNING 13

. SUPERVISED LEARNING 19

2. UNSUPERVISED LEARNING 20

C. FREQUENCY SENSITIVE COMPETITIVE LEARNING 23

V. ALGORITHM DEVELOPMENT 31
A. INTRODUCTION oot 31

B. TREE SEARCHED VECTOR QUANTIZATION 33

C. MULTI STAGE VECTOR QUANTIZATION 12

D. CLASSIFICATION VECTOR QUANTIZATION 50

V. CONCLUSIONSo 61
A. ADDITIONAL WORK 64
APPENDIX A: PROGRAMDETAILS 65
REFERENCES . . . o o oo oot 82
INITIAL DISTRIBUTION LISTo oo e 33

LIST OF TABLES

Number of "ncoding Distance Calculations Required
Number of Processing Elements Required
Number of Codebooks Required
Code Vector Storage Requirements
Channel Load of Codebook Transmission (bits/pixel)

Example Codebook L

o
o

o [i
U o o

o

e

(Y]

LIST OF FIGURES

Original Image oo 3
Scalar Quantization at 4 bits/pixelo 000 3
Scalar Quantization at 2 bits/pixel 000000 3
Scalar Quantization at 1 bit/pixelo 3
Original Image 4
Delta Modulation at 4 bits/pixel 1
Delta Modulation at 2 bits/pixel 1
Delta Modulation at 1 bit/pixel, 4
Original Image 3
2-D FFT at 4 bits/pixel 5
2-D FFT at 2 bits/pixel 3
2-D FFTat 1 bit/pixel 5
Scalar Quantization at 1 bit/pixel L. 7
Delta Modulation at 1 bit/pixel 7
2-D FFT at 1 bit/pixel T
Vector Quantization at 1 bit/pixel 7
Vector Quantization 10
Original Data Set 14
Step 1, Centroidof Data Set 14
Step 2, First Point Splitting 14
Step 3. New Subspaces 14
Step 4. New Centroids 15
Step 5. Second Point Splitting 15

vi

2.8 Step 6. New Subspaces L L 15

29 Step 7. New Centroids 15
210 Step 3. New Subspaces. Algorithm Complete 16
3.1 Neural Network Processing Element 21
3.2 Backpropagation Network Lo L0000 21
3.3 Competitive Learning Network 21
3.4 Competitive Learning 2-D Example 24
3.3 FSCL2-D Example. 27
3.6 Training Required For LBG and FSCL Algorithms 28
3.7 Original Image L 29
3.8 FSCL Using a Size 16 Code Book and a2 X 2 Block 29
3.9 FSCL Using a Size 64 Code Book and a3 X 2 Block 29
3.10 FSCL Using a Size 512 Code Book and a3 X 3 Block 29
4.1 Tree Searched Vector Quantization 36
1.2 Linear Hardware Implementationof TSVQ 36
43 Original Image 38
4.4 TSVQ Using a Size 16 Codebook and a2 x 2 Block 38
15 TSVQ Using a Size 64 Codebook and a3 x2 Block 38
4.6 TSVQ Using a Size 512 Codebook and a3 x 3 Block 38
4.7 Performance vs. Block Size.o oo 39
4.8 TSVQ Using a 3 x 3 Block. First Stage 10
49 TSVQ Using a 3 x 3 Block. Second Stage 10
1.10 TSVQ Using a 3 x 3 Block, Third Stage 10
4.11 Computational Cost 11
4.12 Multi Stage Vector Quantization. L. 13
4.13 Classification Vector Quantization 13

vii

o e
Loie o= o

MSVQ Using a Size 16 Codebook and a2 x 2 Block 7
MSVQ Using a Size 64 Codebook and a3 x 2 Block 17
» MSVQ Using a Size 512 C'odebook and a 3 x 3 Block 17
MSVQ Using a Size 4096 Codebook and a4 x 3 Block v
MSVQ Using a 3 x 3 Block. First Stage 18
MSVQ Using a 3 x 3 Block. Second Stage 43
MSVQ Using a 3 x 3 Block. Third Stage 18
Performance vs. Block Size. 0. 19
Computational Cost 51
Histogram of Edge Detector Ratio Values 33
CVQ Using a Size 16 Codebook and a2 x 2 Block 35
CVQ Using a Size 64 Codebook and a3 x 2 Block 35
CVQ Using a Size 512 Codebook and a3 x 3 Block 55
Performance vs. Block Size. 59
Computational Cost, 60
FSVQ . 62
TSVQ 62
MSVQ . o 62
CVQ . e 62
Computational Cost vs. Performance 63
Basic FSCL Algorithm, 66
Tree Search Algorithm 67
Multi Stage Algorithm 68
Classification Algorithm 69

viil

I. INTRODUCTION

Despite all the recent advances in the areas of communications and data coding.
there are stili a large number of applications where the achievable data rate is not
sufficient to the task. There also exists an even larger number of tasks for which an
improvement in data compression would enable us to do the job better or more effi-
ciently. Two prime examples of the types of data for which better coding is desirable
are digital speech and image data. Both of these data types require an extremely high
data rate for real time transmission. Both also display a wealth of internal structure
that can be utilized for compression by a coding system. Finally both of these tvpes
of signals can be transmitted with a certain amount of distortion and still provide
the required information. For example, it may be sufficient to maintain intelligibility
for speech data, and it may be sufficient for an image to display enough detail for an
analyst to recognize certain key features rather than a faithful bit by bit reproduc-
tion. This is in contrast to many other types of digital data for which our principle
interest 1s to add error correcting capability until the probability of a single bit error
is vanishingly small. All these factors combine to make improved compression tech-
niques for speech and image data a worthy goal and thus an active area of research
in digital signal processing.

In signals for which we can tolerate some distortion. there must be some methrd
for measuring the distortion relative to the original signal. These fall into the two basic
categories of subjective distortion measures and objective distortion measures. The
subjective measures are a result of human impressions of the comparison between
original and distorted versions: while the objective measure has some closed form

mathematical expression by which we can compare competing systems. For our study

we desire a data type that has a simple objective measure that corresponds well to the
results of subjective measures. Fortunately. for image data there exists a distortion
measure. mean square error, which is both easy to calculate and corresponds fairly well
to subjective distortion results. Thus in this thesis. we concentrate on the compression
of image data.

There are many schemes for compressing image data. but few have been suc-
cessful in producing good images quality at low data rates. Generally. images are
coded with each pixel assigned a grey level from 0 to 255. This corresponds to a data
rate of 8 bits/pixel. Several examples showing how three common coding tec™niques
perform at low data rates are shown in the following figures. First. we examine the
technique of scalar quantization. in which we map the 256 grev levels into a smaller
number, which can then be transmitted using a smaller number of bits. Figure 1.1
shows the original at 8 bits/pixel, Figure 1.2 shows scalar quantization at a data rate
of 1 bits/pixel. Figure 1.3 shows a data rate of 2 bits /pixel, and figure 1.4 shows a
data rate of 1 bit/pixel. Clearly this technique produces poor results below about
4 bits/pixel. Second. we examine the technique of delta modulation. in which we
encode the difference between the current and previous pixels using a ras'« - scan.
Figure 1.5 shows the original image, Figure 1.6 shows delta modulation at a data rate
of 1 bits/pixel. Figure 1.7 shows a data rate of 2 bits/pixel, and Figure 1.8 shows
a data rate of 1 bit/pixel. While delta modulation is an improvement over scalar
(uantization, it tends to perform poorly below about 2 bits/pixel. Next, we examine
a transform technique, the two dimensional fast fourier transform (2-D FFT). Fig-
ure 1.9 shows the original image, Figure 1.10 shows the 2-D FFT at a data rate of
4 bits/pixel, Figure 1.11 shows a data rate of 2 bits/pixel, and Figure 1.12 shows a
data rate of 1 bit/pixel. This technique offers fairly good reproduction down to 2

bits/pixel.

Figure 1.2 Scalar Quantization

at 4 bits/pixel

Figure [.1 Original [mage

Figure [.4 Scalar Quantization

at 1 bit/pixel

Figure 1.3 Scalar Quantization
2 bits/pixel

at

Figure 1.6 Delta Modulation

at 4 bits/pixel

Figure 1.5 Original Image

Figure 1.8 Delta Modulation

at 1 bit/pixel

Modulation

Figure 1.7 Delta
at 2 bits/pixel

o o

%, N S
E > AR & WY

R TSN | vegm———

ULl et et

o

D FFT at 4 bits/pixel

Figure 1.10 2

Figure 1.9 Original Image

Figure 1.12 2-D FFT at | bit/pixel

Figure 1.11 2-D FFT at 2 bits/pixel

Now we compare the previous techniques to a more powerful method. vector
quantization. In vector quantization. we encode an entire block of data using a single
codeword. This codeword is produced by comparing the block to be encoded with a
codebook of example blocks and choosing the example which is closest in some sense.
A comparison ol vector quantization and the previous three techniques is made in the
tollowing tigures at a data rate of 1 bit/pixel. Figure 1.13 shows scalar quantization
at | bit/pixel. Figure 1.14 shows delta modulation at 1 bit/pixel. Figure 1.13 shows
the 2-D FFT at 1 bit/pixel. and Figure 1.16 shows vector quantization at 1 bit/pixel.
(‘learly the technique of vector quantization is superior at low data rates. There
exist other coding techiques [Ref. 1] such as linear predictive coding and the discrete
cosine transform which have been successful in image coding. but were not considered

in these examples for the sake of brevity.

A. THESIS OBJECTIVE

Vector quantization has not been commonly used because of the large compu-
tational cost involved in generating the codebook and finding the closest codeword
for each block to be transmitted. Recently, a revived interest in research in neural
networks has shown some promise for an efficient implementation of vector quanti-
zation. In this task we benefit from the neural network’s ability to quickly perform
categorizations (which accelerates the codebook generation), and also from the par-
allel processing capability (which speeds the process of comparing an input block
to the codebook). This thesis concentrates on addressing the difficulties in imple-
menting vector quantization using neural networks. Full Search, tree search. and
multistage VQ schemes are studied for this purpose. Results of the application of

these techniques to image data are presented.

Figure 1.13 Scalar Quantization Figure 1.14 Delta Modulation
at 1 bit/pixel at 1 bit/pixel

Figure 1.15 2-D FFT at 1 bit/pixel Figure 1.16 Vector Quantization
at 1 bit/pixel

B. THESIS OUTLINE

In the second chapter we describe the basic theory of vector quantization. in-
rroditce the existing VQ algorithms. and present some simple examples of how a
codebook is generated. In the third chapter we introduce the basic concepts of neural
networks. discuss the types of neural network learning, and present the algorithms
which can be applied to the problem of vector quantization. In the fourth chapter we
identifv the shortcomings of existing neural network vector quantizers. and apply the
tree search. multi stage and classification vector quantization schemes in an effort to

improve performance. .

II. VECTOR QUANTIZATION

A. INTRODUCTION

One of the results of Shannon's rate-distortion theory [Ref. 3] is that better
results can always be obtained if vectors are used in coding rather than scalars.
This result applies even if some technique has been applied to the input data to
remove all correlation. Although delta modulation and transform methods provide
substantial improvement over scalar quantization. they all use scalar coding and are
thus suboptimal. As we saw in the examples presented previously. vector quantization
provides a dramatic improvement in reproduction quality for low data rates. In this
chapter we examine the technique of vector quantization as it applies to images and

review existing methods of implementation.

B. DETAILS OF THE METHOD

Vector Quantization (VQ) [Ref. 2] consists of two sets of mappings: an encoder.
v(x). which assigns a channel codeword. u = (u;,uz,....u,), to each input vector.
X = (ro.Iy..... Ik—1). from a set of possible channel symbols called a codebook. and
a decoder. 3(u). which assigns a code vector, y, to each channel codeword. Note that
each input vector is just a vector version of a block from the subject image with each
pixel value corresponding to an element in the vector. The channel symbols consist
of all possible binary p-tuples, where the size of the input vector and the channel
codeword are in general not the same. The number of possible channel codewords is
2*. and thus the bit rate of the vector quantizer is p bits/block or r = p/k bits/pixel.
It is interesting to note that by properly selecting p and k. we can generate any

fractional bit rate that we desire. This is in contrast to scalar quantization where

we are limited to integer bit rates. Figure 2.1 shows the basic structure of a vector

(uantizer system.

Codebook Codebook
Source Encoder Ideal Channel Decoder®Reproduction
X u J Y

Figure 2.1: Vector Quantization

The basic goal of the vector quantizer design is to discover which specific set of
encoder and decoder mappings will give the best reproduction of the image in some
sense. This depends upon the cost function or distortion which we use to measure
thie quality of the output image. We wish to find a distortion or distance measure
between our input image, X, and the output image, X, that is easy to compute and
provides good correspondence with subjective image quality. The measure chosen for

this work is the mean square error (MSE) which is defined as

N N

" 1 5 1 N .
e =d(X,X) = -N—;HX -X|*= -]—\/—;ZZ(XQ —%,;)? (2.1)

i=1 ;=1
where N is the number of pixels along one side of the image.

We will now examine the conditions under which the vector quantizer will be
optimal. First we define the set of all possible code vectors, y,as C =y : Vy €

J(u)]. This set of code vectors together with the corresponding codewords is called

10

the codebook. For the vector quantizer to be optimal it must display two properties
‘Ref. 3].
Fir<t. the encoder must select the code vector which is closest to the input

vector according to the distortion measure. In our case this is the mean square error.

This can be stated as

o
o

d(x. 3[(x)]) = mlin d[x,3(u)] = ;réi(rjld(x.y). (:

Thus the encoder can be thought of as a device which partitions the input vector
space into sections which surround a code vector. Any input which falls into that
section will be assigned the codeword corresponding the code vector contained in that
section. The encoder can also be viewed as a device which.divides the input vector
space into a group of sections for which all input vectors occuring in a section are
grouped together and transmitted as a single representative code vector.

Second. for an encoder . the decoder must assign as the code vector the gener-

alized centroid of all the vectors which are encoded into that code word. In our case

the centroid can be expressed

1
y = 3(u) = cent(u) = -z(—u) Z X (2.3)
X,:v(X,)=u

where i(u) 1s the number of input vectors that are mapped to u. This is the selection
of the code vector which will minimize the distortion, E[d(x.,y) | ¥(x) = u] for a
particular encoder.

If we carefully examine the previous two properties, we can see that the first
gives us a method to optimize an encoder for a given decoder, and the second gives us a
method to optimize a decoder for a given encoder. This suggests an iterative technique

of applying these two properties successively until convergence is obtained or some

11

desired distortion level is reached. This is in fact the basis for the generalization of
Lloyvd's optimal scalar quantizer [Ref. 4]. which was produced by Linde. Buzo and
Girav Ref. 6] and is referred to as the LBG algorithm. The algorithm consists of the

following steps:
¢ Step 1 Choose an initial decoder.

e Step 2 Encode the image using the given decoder (optimize the encoder as in

the first property). If the distortion is small enough. terminate the algorithm.

e Step 3 For each codeword u replace the corresponding code vector with the
centroid of all input vectors that mapped to u in the encoder produced by step

| {optimize the decoder as in the second property). Then repeat step 2.

The last detail to be addressed is the selection of the initial decoder. Clearly in
an iterative technique such as this, a good initial selection can make a large difference
in the number of iterations required for convergence to the final result. Several tech-
niques have been employed (See for example [Ref. 7]). First, we can just select the
appropriate number of input vectors from the image and use them as the code vec-
tors in the initial codebook. Second. we can apply a scalar quantizer to each element
of the vector and generate the number of values needed to form the code vectors.
Lastly. we can use a technique known as splitting. In this technique we start with a
codebook of size 1, which is just the centroid of the entire data set. Then we split the
code vector by adding and subtracting a small vector from the original code vector
and optimize this new codebook of size two. Then we split the two resulting code
vectors into a codebook of size 4 and optimize this code book as well. We continue
this pattern of splitting and optimization until the desired codebook size is reached.

Of the initialization techniques described above. the splitting technique is most often

12

used because it initializes each step with a good initial guess which limits the number
of 1terations required.

Now we present a two dimensional example to give an intuitive feel for how the
<plittine algorithm progresses. The data set for the example is presented in Figure 2.2,
['his dara <et has been chosen to have a simple structure in order to eliminate the
need for many iterations at each splitting. In this example we attempt to generate a
vector quantizer of size four. Step 1 is to form the codebook of size one by calculating
the centroid of the entire data set (See Figure 2.3). Step 2 is to split the size one
codebook into a size two codebook by adding and subtracting a small vector (See
Figure 2.4). Step 3 is finding the vector subspaces which define the decision areas for
the new codebook (See Figure 2.5). Step 4 is to calculate the centroid of each of the
new vector subspaces and make these centroids the new code vectors (See Figure 2.6).
Step 3 is to split the newly generated size two codebook into a size four codebook by
adding and subtracting a small vector from each code vector (See Figure 2.7). Step
6 1s to calculate new vector subspaces for each of the code vectors (See Figure 2.3).
Step 7 1s to calculate the centroid of each new subspace and assign them as code
vectors (See Figure 2.9). Finally, step 8 is to find the vector subspaces corresponding
to the decision regions for our final codebook (See Figure 2.10) and the algorithm is
complete.

For this example it is easy to see where the code vectors for a vector quantizer
of four should be placed; one at the centroid of each of the four clusters. This is the
result produced by the LBG algorithm. However. we must keep in mind that this
example was carefully contrived to eliminate the large number of iterations required
for optimization at each splitting. A problem from a real data set, even if the di-
mension and size are the same as our example. would be much more computationally

expensive.

13

200- w -

" f
100 - R
- :
0 ‘ ;
0 100 200
Figure 2.2 Original Data Set
1
200- = {
- |
® |
100 - & <!
‘ ,
O i " |
0 100 200

Figure 2.4 Step 2, First Point Splitting

14

200+ n -
|
! o
100~ % -
R
O'I
0 100 200

Figure 2.3 Step 1, Centroid of Data Set

200F @ m -
]
*
100+ {' ..] -
L
oL i
0 100 200

Figure 2.5 Step 3, New Subspaces

200 -

100 -

0

100 -

0

- -
|
” [
Q 0 !
o
‘ |
0 100 200
Figure 2.6 Step 4, New Centroids
| I
- | —,
5 a
| he |
® ° \
| “ |
| 1
L - i
0 100 200

Figure 2.8 Step 6, New Subspaces

15

200~ w -

0 100 200
Figure 2.7 Step 5, Second Point Splitting

|
2000w

.
o e
v
|
OO | 160 | 200

Figure 2.9 Step 7, New Centroids

250~ 7 :)

200 - L / -
;
/
; / § y
150~ ; Wi | _
/
AL /
. // ™~ /
100~ 7 / 0
: // .
> \
50+ % \ -
, \
’ \
ol . . ' ‘
0 50 100 150 200 250

Figure 2.10 New Subspaces, Algorithm Complete .

III. NEURAL NETWORKS

A. INTRODUCTION

Artificial Neural Networks [Ref. 3] have recently been the subject of intense
research because of a desire to develop machines whicli can achieve human-lhke per-
formance in such areas as speech and 1mage recognition. After a lengthy period of
inactivity in this area. the recent development of new algorithms. advances in ana-
log V' LSI techniqgues. and a new emphasis on parallel computing have contributed to
major advances in this field.

Like their biological counterparts, neural networks rely on a large collection of
simple but highly connected processing elements. This enables the neural network to
avoid the sequential instruction processing characteristic of the von Neumann com-
puter. and instead process many possible results in parallel. This property makes
a neural network an attractive option to investigate in many 1ecognition problems.
Neural networks are also designed to adaptively update the interconnection weights
between processing elements in an effort to improve their performance. This adaptive
updating is termed “learning.” This property allows a neural network to continue to
function well despite changes in the statistics of the input data.

A neural network is a good tool in pattern recognition because of its ability to
auickly categorize an input pattern in a previously learned category. However. there
also exist different algorithms which are equally proficient at taking a data set and
torming the occurring patterns into categories without supervision. That is. without
external defini*ion of the categories to be used by the :eural network. Thus with

some modifications. a reural network can be made to do a task which is very similar

17

to vector quantization. If we can find the proper way to update the interconnection
weights and the proper function for the processing elements. we should be able to find
a coutignration that is capable of duplicating the results of the LBG algorithm which
we =aw in the previous chapter. In the following sections we will briefly discuss the
difference between unsupervised and supervised learning. and how neural networks

can be applied to the problem of vector quantization.

B. NEURAL NETWORK LEARNING

Each processing element of the neural network is connected to many inputs
X = (Ig.Tpe-... zn-1) (See Figure 3.1). These inputs could originate directly from
the input to the network. or some or all could arrive from the output of another
processing element. Each input to the processing element has an associated weight
w,. which describes the strength of the connection between the associated input node
and this processing element. Each processing element has an activation level which

is a function of the inputs and weights. One of the most common activation formulas

15

N-1

y=f(Y waz;~0) (3.1)
=0

where 8 is some threshold. This is just a weighted sum which is thresholded and
subjected to a function f, which is usually nonlinear.

Typical neural networks are made up of many of these processing elements
which are arranged and interconnected in some pattern. This pattern, the activation
formula discussed above, and the scheme for adaptively updating the weights for each
processing element are the items which characterize each type of neural network.

A final property which characterizes a neural network is the manner in which

it 15 trained. There are two main categories, namely supervised and unsupervised.

18

1. SUPERVISED LEARNING
In supervised learning. the neural net is provided a set of desired output
values for each set of input values presented to the network. These desired output
values are used in order to update the interconnection weights. A good example
of a neural network which uses supervised learning is the backpropagation network
[Ref. 9]. which is arranged as in Figure 3.2. The activation function for a typical

implementation of backpropagation algorithm is

1

fle) = T

(3.2)

which is known as a sigmoid logistic function. The training of the network proceeds

as follows:

e Step 1 Initialize the interconnection weights to small random values.

e Step 2 Present a set of input values and corresponding desired output values

to the network.

e Step 3 Apply the activation formula for each processing element until the

output values have been calculated.

e Step 4 Update the interconnection weights starting with the output layer and

moving downwards using the formula

w;; (¢t + 1) =w,'j(t)+776]'11.' (3.3)

where w;; is the interconnection between node : of the previous laver and node
J of the current layer, z; is the activation level of node 7 , 7 is the learning rate.

The backpropagated error is

19

5 = { y,(1 —y;)(d; —y;) for an output node (3.4)

r,(1 —r,) ¥ bxw;i for an intermediate node

where y, is the activation level of node j on the current layer. and d, is the

desired output for node j.

Steps 2-4 are repeated until the network weights have converged or the
error between the output and desired signals is sufficiently low. This method works
well for a case such as speech recognition where we can collect a large quantity of
sample data with the correct classification appended to allow training of the network.
However a network of this sort is of little use for a problem like vector quantization
in which the neural network must form the desired categories without any external
guidance.

2. UNSUPERVISED LEARNING

A good example of a neural network algorithm that utilizes unsupervised
learning is the competitive learning network shown in Figure 3.3. This algorithm is
designed to take the set of input vectors and use them to form a set of categories:
one category for each node on the second level of the network. This is accomplished
by measuring the proximity of each input vector to the set of weights for each node
on the second level and adaptively adjusting the weights of the closest node towards
the input vector. After sufficient training, the network should categorize all input
vectors which are similar into the same category based on their distance from the
weight vector of each node.

The training of the competitive learning algorithm proceeds as follows.

e Step 1 Initialize the weights from the N input nodes to the M output nodes

with small random numbers.

e Step 2 Present an input vector from the data set.

20

HIDDEN LAYER q

QUTPUT

INPUT

Figure 3.2 Backpropagation Network

YO YI YM—‘

X X, X\

o]
Figure 3.3 Competitive Learning Network

21

e Step 3 Compute the distance d,. between the input vector and the weights of

each output node j using the formula

N-1

dy = 3 [xdt) — w, () (3.3)

1=0

where r,(f) is the input to node i at time t. and u,,(t) is the interconnection
weight from input node i to output node j at time t. Note that this distance
measure is just the unnormalized MSE between the input vector and the weight

vector of output node j.
o Step 4 Select the output node j~ which is closest to the input vector.

e Step 5 Update the weights of the closest output node j* using the expression

wij(t + 1) = wyi(t) + n(t)(zit) — wi; (1)) (3.6)

where n(t) is the time dependent learning rate.
e Step 6 Get the next input vector and return to step 2.

We continue training the network until convergence is obtained or the average error
for the entire data set is less than some threshold value.

It is not hard to see the resemblance between vector quantization and the
task performed by the competitive learning algorithm. To implement VQ, we just
present each block of the image as an input vector and train the neural network until
it converges. Then the weight vectors produced for each output node are the code
vectors for the VQ codebook, and the indices of the output nodes are the correspond-
ing codewords. After training, the weights are fixed and the codebook is transmitted

to the receiving site. Then each block to be transmitted is submitted to the neural

22

network. The index of the closest output node to the input is transmitted as the \'Q
codeword. At the receiving site. the codeword is used as the argument in a lookup
table in which the codewords and the corresponding code vectors are stored. The
code vector chosen is then converted into an image block which serves as an approxi-
mation to the original block. After the codewords for all the blocks in the image are
rransmitted and decoded. the final reproduction image is assembled from the code
vector approximations.

The competitive learning algorithm is now applied to the two dimensional
\'Q example presented in the previous chapter. The trajectories of the code vectors
are presented in Figure 3.4. Notice that the algorithm attempts to represent the
data with a single code vector. This occurs because the code vector that is closest
for the first input vector continues to be the closest for all subsequent input vectors.
Thus none of the other code vectors are ever utilized and their weights are never
updated. An algorithm such as this clearly does not utilize all its code vectors and
thus cannot produce an optimum vector quantizer. In the next section we examine
modifications to the competitive learning algorithm which improve its performance

as a vector quantizer.

C. FREQUENCY SENSITIVE COMPETITIVE LEARNING

As shown in the previous section, the principal problem with using competitive
learning as a vector quantizer is the under-utilization of the output nodes. This
problem has been addressed in the literature and several possible solutions have been
presented. In [Ref. 10], an algorithm referred to as the Self Organizing Map (SOM)
is introduced. In the SOM, a neighborhood is defined about the closest output node
and this neighborhood is used to update more than one output node at a time. In

this technique the update formula becomes

23

250~

200 Y)
|
| /
150t @V i
"
100 - 3)
|
50~ k. -
;
O« L s
0 50 100 150 200 250

Figure 3.4 Competitive Learning 2-D Example

24

w,(t+ 1) =, (1) + n(]z,(8) —wy, ()] j € N) (3.7)

where 7 is the index of the closest output node and .\" is the neighborhood defined
about the closest output node. This neighborhood is started with a large size to
enconrage the updating of many output nodes, and then gradually shrunk with time
as the network converges to generate more fine structure. Finally. the neighborhood
shrinks to a single node which allows each node to be updated independently. At this
point the SOM algorithm is identical to the original competitive learning. \We can
see that the improvement in output node utilization comes from establishing a good
distribution of weight vectors throughout the input vector space and then ailowing
the network to converge. The drawback of this technique is that the resulting network
takes an excessive number of iterations to reach convergence.

Another technique termed adding a conscience to competitive learning is pre-
sented in [Ref. 11]. In this algorithm we generate a new variable. p;. for each output
node which represents the percentage of the time that a particular node is the closest

to the input vector. This variable is initialized to zero and updated by :

(1 - B)pj(t)+ B forj= "
(1 = B)p,(t) for j # J°

where B is a constant which is chosen small enough to prevent random fluctuation in

v 4]

p,(t+1) ={ (3.8)

the input data from having too large an effect on p,. Then a bias term. b,. is calculated
using b, = C(1/M —p,), where C is termed the bias constant. This bias term is then
applied to the distance measure for each output node. and the closest node is chosen
based on this biased distance, d; — b;. The result of these modifications is to penalize
the output nodes that have won the competition frequently. This produces a very

uniform output node utilization. This algorithm has the advantage of converging

25

quickly while maintaining good output node utilization. but requires twice as many
distance calculations as the original competitive learning algorithm.

A variation on the conscience technique discussed above is Frequency Sensitive
Competitive Learning (FSCL) [Ref. 12]. In this algorithm the distance d,. between

the input vector and the output node weight vector is modified by:

d’ =d, g(u,) (3.9)

where u, is the number of times the output node ¢ has won the competition and g is
termed the fairness function, with g(u;) = u, in most cases. The effect of this mod-
ification is to increase the modified distance for those nodes which win frequently.
Over many training iterations. the result is a remarkably even node utilization. This
algorithm preserves the fast convergence of the conscience method and also requires
us to update only one set of weights for each input vector. In addition. the algorithm
requires only one set of distance calculations and is thus much faster than the con-
science method. The FSCL vector quantizer is the basic building block which will be
used in the algorithms in the next chapter.

\We first apply the FSCL vector quantizer to the same 2-D example for which
the competitive learning algorithm failed. The trajectories of the code vectors are
shown in Figure 3.5. The FSCL clearly solves the problem of node utilization and
produces the same result as the LBG algorithm.

The FSCL has been applied to the vector quantization of images [Ref. 13
and some interesting results have emerged. Figure 3.6 shows the number of training
iterations required by the FSCL and LBG algorithms. For a small codebook. the
FSCL has a sizable computational advantage, while for larger codebooks the LBG
algorithm is more efficient. To get an idea of how codebook size affects reproduction

quality. we have applied the FSCL algorithm using various codebook sizes. The

26

50

100 150 200
Figure 3.5 FSCL 2-D Example

27

250

number of training passes

45

40

35

30

S T

number of codewords

Figure 3.6 Training Required For LBG and FSCL Algorithms

28

e ,

yd ;

- |

yd ?

FSCL |

|

LBG |

1

L i A 1 1 {
10 20 30 40 50 60 70

Figure 3.7 Onginal Image

Figure 3.8 FSCL Using a Size 16
Codebook and a 2x2 Block

Figure 3.9 FSCL Using a Size 64
Codebook and a 3x2 Block

Figure 3.10 FSCL Using a Size 312
Codebook and a 3x3 Block

original image 1s 256 x 256 pixels (See Figure 3.7) and was divided into blocks of
varions sizes to produce a data rate of 1 bit/pixel for each example. Figure 3.8 shows
an image produced with a block size of 2 x 2 and a codebook size of 16. Figure 3.9
<shows an image produced using a block size of 3 x 2 and a codebook size of 64.
Figure 3.10 shows an image produced using a 3 x 3 block and a codebook size of
512, We can clearly see that the larger codebooks produce a much better quality
of reproduction at the same data rate. This leaves us with the question of how to
get the good reproduction quality of large codebooks while also taking advantage of
the computational efficiency of the FSCL algorithm for generating small codebooks.
The next chapter demonstrates several techniques that can be applied to the FSCL
algorithm which allow us to form large codebooks without the excessive amount of

training required by the orig :l algorithm.

30

IV. ALGORITHM DEVELOPMENT

A. INTRODUCTION

The previous two chapters provided an overview of vector quantization. and
how neural networks have been applied to this problem. Here we investigate the lim-
itations of existing algorithms. and propose modifications which substantially reduce
the computational requireinents without significant loss in performance.

As we saw in Figures 3.8-3.10, the reproduction quality of a vector quantizer
depends strongly on the dimensionality of the vector utilized. We wish to use the
maximum dimensionality possible, but we are limited by the fact that the codebook
size grows exponentially with increasing vector dimension. Whether we plan to im-
_lement the neural network by simulation or in hardware, this limitation introduces
significant difficulties.

In the case of simulation, thc large capacity memory chips available today allow
us to implement very large codebooks. However, we can see from Figure 3.6 th:t
for verv large codebooks, the neural network algorithm has a substantially higher
computational cost than the Linde, Buzo, and Gray (LBG) algorithm. So in order to
make the neural network simulation useful, we must limit ourselves to small codebooks
and thus poor performance, or find a way to form a2 codebook with a large effective
size by combining many smaller codebooks.

In the case of hardware implementation. the computational disadvantage of the
neural network for large codebook size is substantially mitigated by the advantage
gained from parallel processing. However in this case. the codebook size is now limited

bv the number of processing elements which can be implemented in hardware. Even

3i

with expected advances in neural network hardware. it is still important to maximize
the etfective codebook size for a given number of processing elements.

[u the following sections we investigate algorithms which improve the perfor-
mance for both hardware and simulation implementations. These algorithms allow a
large codebook to be formed from many small codebooks. and allow a large effective
code hook to be formed using a substantially smaller number of processing elements.

The vector quantizers we have examined so far are optimal in two senses. First
the codebook formed produces the minimum MSE possible for the training data
utilized. and secondly the encoder always picks the codeword corresponding to the
vector which produces the least distortion for any given input vector. This tvpe of
algorithm is called full search vector quantization (FSVQ)., and it must calculate a
number of distortions equal to the size of the codebook for each vector processed. As
noted above, this property makes full search codes impractical except for the case of
small codebooks.

We now consider algorithms that produce codes which are suboptimal in both
senses mentioned above. They may not produce a codebook which produces the
minimum MSE for the training data, and they may not select the codeword cor-
responding to the smallest distortion available. However these algorithms produce
codebooks which have structure that dramatically reduces the computational effort
required for a given codebook size. Although the performance is degraded relative to
a full search algorithm, the suboptimal algorithm can offer such a large reduction in
complexity that a larger codebook may be implemented. This in turn can provide
better performance at a smaller computational cost than the full search algorithm.

These algorithms are described below.

32

B. TREE SEARCHED VECTOR QUANTIZATION

The TSVQ [Ref. 14] design was developed in an attempt to reduce the number
of distance calculations which must be made to encode a vector. In the neural network
implementation. not only does the software simulation option also benefit from this
reduction in distance calculations. but we also see a reduction in the amount of
training required. This improvement stems from the fact that the structure of the
TSVQ produces data subsets for which the basic FSCL algorithm vector quantizer
converges more quickly.

The TSVQ algorithm is a structure which causes us to search a sequence of
smaller codebooks rather than a single large one. This is accomplish*d »v arranging
many small vector quantizers in a tree structure as shown in Figure 4.1. The tree
is searched starting with the root, and each search of the smaller vector quantizers
advances one level through the tree. Anm level TSVQ is characterized by the m-tuple
R = (R,.R,,... R,y) , which describes the number of bits encoded at each level of
the tree. So each vector quantizer at level j would have 2% codewords and 22 R
vector quantizers are required to complete level ;. The codebook size for the entire
structure is 221 B,

The encoding of a vector proceeds by first applying the input vector. x. to
the vector quantizer at the root of the tree structure. This produces the closest
code vector. y;, which is our first estimate of x, and the first R, bits of the channel
codeword. This R;-tuple, u,;, also serves as the index of the vector quantizer to be
searched in the next level. Thus each codeword in level one provides a mapping to
a vector quantizer in level two. We then present x to the 272 size vector quantizer
selected at level two which produces a new estimate y; and the second portion of the
channel codeword u,;. We use the vector (u;,u;) to choose the vector quantizer to

search at the third level. This process continues until the final level is reached. At this

33

point. we have produced our final estimate y,, and the complete channel codeword.

m 9R,

=1 =

u={u;.u:..... U,,). This structure allows us to encode a vector using only 3~
distance calculations in contrast with the 2 calculations required for the full search
method (B = R + Ry + ... R,) . Table 4.1 shows some examples of how large the
computational savings for the encoding step can be for TSVQ. The R vector listed

in the tahle describes the architecture of the particular TSVQ structure used in the

example. This notation is explained later in this section.

TABLE 4.1: Number of Encoding Distance Calculations Required

Distance Calculations

R Block Size | Codebook Size | FSVQ TSVQ
(2.2) 7% 2 16 16 8
(3.2) 3x?2 64 64 16

(3.3.3) 3x3 512 512 24

The training of the TSVQ proceeds one level at a time. We first apply the entire
training set to the FSCL vector quantizer at the root of the tree until convergence
is obtained. We then use the codebook produced to divide up the data set into
R, subsets based on their proximity to the newly generated code vectors. The new
subsets are then applied to the R, vector quantizers on level two. We proceed in this
wayv until the vector quantizers at the final level. m, have been trained. Each vector
quantizer in the tree is initialized by randomly selecting vectors from the appropriate
training <et. This type of initialization speeds convergence of the neural networks.

This structure allows us to greatly reduce the number of distance calculations
necessary for the software simulation case. This is true because the path through the
tree allows us to ignore the vast majority of code vectors which are far from the input
vector. TSVQ also displays a property which is termed graceful degradation. This

means that if the codeword must be truncated due to channel capacity considerations.

34

it will still be possible send a good estimate of the data for this new lower data rate.
This is in contrast to the full search method, whose codeword convevs no useful
information if it 1s truncated. An added benefit of this method is that the structure
imposed on each of the data subsets applied to the FSCL vector quantizers causes
them to converge more quickly. This provides a substantial reduction in training
required for both software and hardware implementations.

3 final benefit of the method is the large reduction in the number of processing
elements required for hardware implementation. Since the TSVQ algorithm updates
only the weights of the vector quantizers of the path taken for each input vector
applied. these are the only vector quantizers that must be realized in hardware. Thus
we can convert the hardware implementation from a tree structure to a linear structure
(see Figure 4.2) along with memory and a system to load the appropriate weights for
each level. Thus we can reduce the number of processing elements required from
e o R, to 3272, R. Table 4.2 shows some examples of the number of processing
elements required if the TSVQ is implemented in hardware using tree structure and

linear structure. For larger block sizes and code book sizes, the savings is substantial.

TABLE 4.2: Number of Processing Elements Required

PE’s Required

R Block Size | Codebook Size | Tree Structure | Linear Structure
(2.2) 2x2 16 20 8
(3.3) 3% 2 64 72 16
(3.3.3) 3x3 512 574 24

For the simulations, a single 256 x 256 pixel image was utilized. This image
was divided into blocks of various sizes to achieve a data rate of 1 bit/pixel for each
example. The 1 bit/pixel provided a standard to allow comparisons between examples

with different codebook sizes, and provided a challenging enough problem to allow

35

Figure 4.1 Tree Search Vector Quantization

X

WEIGHT

STORAGE [u,
WEIGHT U
STORAGE 3

Figure 4.2 Linear Hardware Implementation Of TSVQ
36

good comparisons to be made.

The simulation results for TSVQ are shown in Figures 4.3-4.6. The original
image is shown in Figﬁre 4.3. TSVQ with a block size of 2 x 2. and a size 16
codebook constructed from five size 4 codebooks arranged in a two level tree. is shown
in Figure 4.4. TSVQ with a block size of 3 x 2. and a size 64 codebook constructed
from nine size 8 codebooks arranged in a two level tree, is shown in Figure 4.5. TSVQ
with a block size of 3x 3, and a size 512 codebook constructed from 73 size 8 codebooks
arranged in a three level tree, is shown in Figure 4.6. It is easy to see the strong effect
of codebook size on performance by noting the improvement in subjective quality
as the codebook size is increased from 16 to 64 to 512. In particular. the larger
codebook sizes display an image that appears sharper because the small code books
does not contain a sufficient number of code vectors to represent edges well. Also. the
small code book does not contain code vectors with enough different grey scales to
reproduce gradually changing intensities, such as those in the top of the hat or near
the beam to the left of the hat. This is confirmed by the MSE performance. which is
displaved in Figure 4.7. Comparing the MSE performance of TSVQ to the full search
algorithm. we can see that the loss of performance is very small. This is reinforced by
comparing Figures 4.4-4.6 for TSVQ and Figures 3.8-3.10 for full search. which show
that the degradation caused by use of the TSVQ inethod is small in the subjective
sense as well.

To give an idea of the refinement taking place at each level, each stage of the
three stage TSVQ example in Figure 4.6 is shown in Figures 4.8-4.10. The improve-
ment taking place at each level is clear. We can also get a good idea of what would be
reconstructed if the code were truncated. Figure 4.8 corresponds to 0.33 bits/pixel.
Figure 4.9 corresponds to 0.67 bits/pixel, and Figure 4.10 corresponds to 1.0 bit/pixel.

It is apparent that a degraded but nevertheless useful image is still available if the

37

Figure 4.3 Oniginal

Figure 4.5 TSVQ Using a Size 64
Codebook and a 3x2 Block

38

Figure 4.4 TSVQ Using a Size 16
Codebook and a 2x2 Block

Figure 4.6 TSVQ Using a Size 512
Codebook and a 3x3 Block

MSE

75

70

65

60

55¢

50

45

40

35

30

25

Performance vs. Block Size

Block Size in Pixels

Figure 4.7 Performance vs. Block Size

39

N
N
nd N -
~U
N
AN
FSVQ .
4.5 5 5.5 6 6.5 7 7.5 8.5

Figure 4.8 TSVQ Using 3x3 Block Figure 4.9 TSVQ Using 3x3 Block
First Stage Second Stage

Figure 4.10 TSVQ Using 3x3 Block
Third Stage

40

Number of Training Passes

Computational Cost

180 7 | |

160+ / (J

v ?

140+ // 1

Ve |

120+ / J:

/ |

1 e -

! |

. FSVQ” |

60+ / 4

i / _‘

TSVQ _,.-_..._...‘-._
20+ —
P

4 4.5 5 5.5 6 6.5 : " 8)

Block Size in Pixels

Figure 4.11 Computational Cost

41

code is truncated. This is the property termed previously as graceful degradation.
The improvement in computational cost can be seen in Figure 1.11. For the
three examples, the savings varied from 63 to 72 percent. In other words the TSVQ
aleorithm required only about 1/3 to 1/4 the computation. As stated before. this
arlvantage is a result of utilizing smaller more efficient codebooks to form a single large
effective codebook. This large computational advantage is gained at an very modest
loss of performance. This makes the TSVQ an extremely attractive alternative to the

FSCL algorithm.

C. MULTI STAGE VECTOR QUANTIZATION

We saw in the last section that the TSVQ algorithm offers many advantages
for neural network vector quantizers. but that some troublesome limitations remain.
First. for both TSVQ and FSVAQ), the load on the channel of transmitting updates for
very large codebooks can be excessive. Second, even though TSVQ can reduce the
training effort. a large number of passes through the image is still required for good
performance. Finally, although TSVQ produces a codebook with structure. it actually
increases the storage required for the code book. We now examine the application
of a technique termed Multiple Stage Vector Quantization (MSVQ) [Ref. 15] to the
basic FSCL vector quantizer. This technique has the advantage of further reducing
the computational cost and allowing a very efficient hardware implementation.

Like TSVQ. MSVQ has two or more levels, but instead of working with the
original input vector at each stage as in TSVQ, MSVQ attempts to encode the error
generated at the previous level. An m level MSVQ (see Figure 4.12) can be described
by the m-tuple R = (R, R;,.... Rn). where R; is the number of bits used to encode
the error at level i of the MSVQ. The first level of the MSVQ is just a normal FSCL

vector quantizer. The input vector, X, is applied to the vector quantizer at level one

42

combined

codebook

Figure 4.13 Classification Vector Quantization

43

and the first estimate, y;. is produced along with the first R, bits of the channel
codeword. u). Next. the first error vector is formed by taking the vector difference.
X — y;. This error vector. e, is then applied to the size 22 vector quantizer at level
two. which produces an estimate of the error vector. &;. and the next R, bits of the
channel codeword. So at the second level. our estimate of the input vector is the
vector sum y, = y; + €. In the following stages. we continue to form an error vectcr
from the previous stage and use a FSCL vector quantizer to encode this error. Each
stage produces an estimate for the error and a portion of the channel codeword. At
the last stage. the error vector €,_; is encoded and the final estimate of the input
vector is available by performing y,, = y1 + €, +€;+... 4+ €,,_;. and the full channel
codeword u = (u;. u,..... U,).

For encoding, MSVQ requires 7, 2% distance calculations which is the same
as TSVQ and much less than the 2R required for FSVQ. However, the MSVQ requires
only n vector quantizers and thus m small codebooks to be stored as compared with
S T R, for TSVQ. Table 4.3 shows the difference in the number of codebooks
required by TSVQ and for some of the examples used in simulations. This reduces
the total number of code vectors to be stored from ¥, IT{_, R, for TSVQ and 2F%
for FSVQ to 3", 2R for MSVQ. Table 4.4 shows the total number of code vectors
which must be stored for several examples of FSVQ, TSVQ, and MSVQ. We can see
that there is a storage price to be paid for the compuuational advantage of TSVQ.
bit the MSVQ provides a large reduction in both. This dramatically reduces both
storage requirements and the load on the channel from transmitting codebook up-
dates. Table 4.5 shows the extra load on the c.annel for each of the three algorithms
assuming that the codebook is updated with each frame. The advantage of MSVQ
in ttis regard for large codebooks is apparent.

As with TSVQ, the training of the MSVQ proceeds one ievel at a time. We apply

14

the original data set to FSCL vector quantizer at the first level until convergence is
obtamed. Then we pass the data through the trained vector quantizer and compute
The crror vector bets een each inpu vector and the ciosest code veoror. This forms
a nevs dara set which is a collection of the first stage errors. This first stage error
dara set 1> then applied to the vector quantizer on the second level until convergence
1s obtained: then it is applied a final time to compute the second stage error vectors.
L'his continues until the last stage has been trained. Although the data subsets
produced by MSVQ do not have the same desirable structure as the data subsets
trom TSVQ. there are far fewer codebooks for MSVQ to train. Indeed we find that
the smaller number of codebooks outweigh the larger convergence time in all cases
except for very small overall codebocks. Thus the MSVQ requires significantly fewer
traming passes than TSVQ to reach convergence.

[t is useful at this point to examine the differences between MSVQ and TSVQ.
Both methods produce a multi-level process, but the processing at each level is sig-
niticantly different. The TSVQ algorithm presents the original data vector ai each
tevel. while the MSVQ presents the residual error at each level. TSVQ has an ever
ncreasing number of vector quantizers at each level, while MSVQ has a single vector
quauntizer at each level. TSVQ provides increasingly accurate estimates of the in-
put at each level by systematically dividing the higher dimensional vector space into
smaller and smaller subspaces into which the input must fall. MSVQ provides an
initial estimate at the first level, and provides a better estimate at each level by con-
tinuing to add smaller and smaller correction terms in a way similar to the method of
successive approximations. Each of these corrections is a result of performing vector
quantization on the error subspace of the preceding level. In TSVQ. the code vectors
at intermediate levels are not actually utilized for recorstruction: they are only used

as pointers to direct the algorithm to ‘he appropriate vector quantizer at the final

45

level. Only code vectors of the vector quantizers at the final level are actually used
in the image reconstruction.

The reconstructed images for MSVQ are presented in Figures 4.14-4.17. As in
the previous results. the simulations were conducted on a single test image of 256 x 256
pixels. This image was divided into blocks of various sizes chosen to vield a data rate
of 1 bit/pixel for each reconstruction using a variety of codebook sizes. The original
image is presented in Figure 4.3. MSVQ using a 2 x 2 block and a codebook size
of 16 1s presented in Figure 4.14. This codebook was generated using a two level
architecture containing two code books of size 4. MSVQ using a 3 x 2 block and a
codebook of size 64 is presented in Figure 4.15. This codebook was generated using a
two level architecture containing two codebooks of size 8. MSVQ using a 3 x 3 block
and a code size of 512 is presented in Figure 4.16. This codebook was generated using
a three level architecture containing thr:e codebooks of size 8. MSVQ using a 4 x 3
block and a codebook size of 8192 ‘s presented in Figure 4.17. This codebook was
generated using a three level archit zcture containing three codebooks of size 16.

We also present one example of how the image develops through each stage of
the MSVQ process. Figures 4.18-4.20 show each stage for the example presented in
Figure 4.16. As we saw with TSVQ, the improvement is each stage is easy to see.
The property of graceful degradation is also manifested by MSVQ, since the figures
shown correspond to the lower bit rate images that would be produced if the channel
codewords were truncated.

As with FSVQ and TSVQ, we can see that the performance of MSVQ depends
strongly on the size of the codebook. The performance of MSVQ falls far short of the
standard set by FSVQ as can be seen in the MSE comparison shown in Figure 4.21.
The reason for this large degree of suboptimality can be seen in the structure of

MSVQ. Consider a TSVQ structure in which we formed the data subsets for the next

46

1o) a5ize Srgure S 03 MSVQ Using o 3
. .
| A

-

~QED00K Ana a4 2x2 Block Todepook and 2 2x2 Block
{
.
$
-
H
%
Figure 4.16 MSVQ Using a Size 32 Figure 4.17 MSVQ Using a Size <09n
Codenook and a 3x3 Block Codebook and a 4x2 Block

Figure 4.18 MSVQ Using 3x3 Block Figure 4.19 MSVQ Using 3x3 Block
First Stage Second Stage

Figure 4.20 MSVQ Using 3x3 Block
Third Stage

48

MSE

140

Performance vs. Block Size

120+

100}

80+

20

. MSVQ

T— T A

i

W

6 7 8 9

Block Size in Pixels

Figure 4.21 Performance vs. Block Size

49

10

11

12

level using the error vector instead of the original input vector. Since the vector
(nantization process is translation invariant. the performance of this new structure
would be identical to the original TSVQ. We can also see that this structure is the
same as MSVQ except that a different codebook is used to encode the error vectors
for each branch of the tree. Thus MSVQ is equivalent to TSVQ if we assume that the
probability distribution function which describes the distribution of the errors about
cach code vector on the same level of the tree is identical. That this assumption is far
from the truth accounts for the relatively poor performance of the MSVQ algorithm.

Although the performance of MSVQ is poor relative to FSVQ and TSVQ for
codebooks of the same size. MSVQ maintains several highly desirable features. We can
see from Figure 4.22 that MSVQ provides a huge computational advantage for large
codebooks. MSVQ also provides an extremely simple structure which would require
only a small number of processing elements and would make hardware implementation
much simpler. Finally, because MSVQ uses only one vector quantizer per level. the
algorithm vastly reduces the amount of storage required for sir:ulation and decreases

the load on the transmission channel due to codebook transmission.

D. CLASSIFICATION VECTOR QUANTIZATION

The refinements to the basic FSCL algorithm that we have examined so far con-
centrate on reducing the computational cost of training the vector quantizer system.
Our standard for performance in all cases has been the mean square error. Now we
take a brief look at the subjective quality of the images produced. The most notice-
able problem with each of the methods is the staircase effect . This is where an edge
tollows the outline of the blocks rather than the smooth edge of the original image
as can be seen by examining the curve in the shoulder in Figures 4.3 and 4.5. This

staircase effect follows the size of the block used in coding the image, and will thus

50

Number of Training Passes

180

160

140

120

100

Computational Cost

-

Block Size in Pixels

Figure 4.22 Computational Cost

51

become more and more noticeable as the block size is increased. This puts us in the
uncomfortable situation of wanting to increase the block size to improve mean sgnare
error performance and at the same time wanting to reduce the block size to minimize
this staircase effect. In order to solve this dilemma we need to examine the cause of
this staircase effect and look at possible solutions.

One possible cause is that the codebook does not contain a sufficient variety
of code vectors which represent blocks with edges. To examine this possibility. a
codebook for a FSVQ with a 2 x 2 block size is presented in table 1.6. The four pixel
values in each row constitute a code vector. We would expect a code vector which
represents an edge to contain both high and low values. but upon examining the
codebook in table 1.6, we see that the code vectors exhibit almost no structure and
are certainly inadequate to represent all the possible edge configurations. To examine
the reason for this under-representation of edge blocks, we introduce an edge detector
which is used to indicate whether an edge appears somewhere in the block.

For each set of adjacent pixels in the block. we take the pixel values, m; and
m, and form the ratio mt:—-—(l;:—l—m and apply a threshold to determine if this is an
edge block or a shade block. The results of applying this ratio to our test image is
presented in Figure 4.23 for a block size of 2 x 2. The authors of [Ref. 16] chose
a threshold of 0.4 to define an edge block. Applying this value gives us only 202
edge blocks out of a total of 16384 blocks in the image. Thus it appears that the
problem with edges occurs because there are so few edge blocks in the image. and
the poor representation of these blocks do not contribute significantly to the mean
square error. So the root of the problem seems to be that the distortion measure. i.e..
mean square error, fails to take into account the perceptual importance of the edge
blocks. This leaves two basic solutions: change to a more complicated. perceptua'ly

based distortion measure. or divide the problem by using separate vector quantizers

52

Frequency

1500

1000

500

Histogram of Edge Detector Ratio Values

Figure 4.23 Histogram of Edge Detector Ratio Values

53

2 —j :
}< i
|
|
| |
! 1l <i
I i
‘ :
4‘]
!
] !
Hi
]
i WTTWT'TMW N N i
0.2 0.3 0.4 0.5 0.6 0.7

Ratio Value

on the edge and shade blocks.

The technique of Classification Vector Quantization (CV'Q) [Ref. 16] (See
Fianre 1130 uses the second method discussed above to improve the subjective quality
ol the recoustrneted image. The image is divided into blocks as before. but now we
apply the edge detector and use a threshold to separate the image into two data sets
otie containing the edge blocks and the other containing the shade blocks. These two
data sets are then applied separately to a FSCL vector quantizer which is trained
until convergence. The two resulting codebooks are then concatenated to form an
overall codebook which emphasizes the edge blocks . The amount of emphasis given
to the edge blocks depends on the sizes of the codebooks allocated to the edges and
shades. For example. a codebook size of 64 could be divided into 48 shade code
vectors and 16 edge code vectors. This would give the edges more emphasis than the
original technique. Even further emphasis would be obtained if we used 22 shade and
32 edge code vectors instead.

The simulation results for CVQ are presented in Figures 4.24-4.26. As before
a single test image of 256 x 256 pixels was used, and all test cases were conducted
at 1 bit/pixel. Figure 4.24 shows CVQ using a 2 x 2 block and a size 16 codebook
consisting of 8 edge and 8 shade code vectors. Figure 4.25 shows CVQ using a 3 x 2
block and a size 64 codebook consisting of 32 edge and 32 shade pixels. Figure 4.26
shows ("VQ using a 3 x 3 block and a size 512 codebook consisting of 384 edge and 128
shade code vectors. For the size 16 case (Figure 4.24) we can see that the codebook
13 just too small to represent shades and edges well. The lack of enough shade code
vectors to cover the common grey levels is evident, and the few edge code vectors are
not enough to show much improvement over FSVQ. In the size 64 case (Figure 4.253)
we start to see some substantial improvement in the reproduction of the edges with

very hittle degradation in other areas of the image. Finally, for the size 512 case

=4

Figure 4.24 CVQ Using a Size 16
Codebook and a 2x2 Block

Figure 4.26 CVQ Using a Size 512
Codebook . 1d a 3x3 Block

55

Figure 4.25 CVQ Using a Size 64
Codebook and a 3x2 Block

(Figure 4.26). CVQ is substantially better in a subjective sense. and for the larger
codebooks and larger block sizes it is slightly better than FSVQ in the mean square
crror sense 1See Figure 4.27). It is surprising that any method could surpass the
performance of FSVQ since we belieived this method to be optimal in a mean square
sense. but this effect probably stems from the fact that FSVQ converges very slowly.
aud the test cases were not run a sufficient number of training passes to reach the
tinal value.

A secondary benefit of applying the CVQ technique is an enormous computa-
tional savings over FSVQ. This occurs because the code vectors for edge and shade
pixels appear to converge at different rates. The shade code vectors have a very simple
structure and therefore converge quickly, while the edge code vectors have a complex
structure and converge slowly. In FSVQ, we use a single codebook and thus all code
vectors are run through the data set the same number of times. So long after the
shade code vectors have converged. we continue to waste computational time updat-
ing them. In CVQ, we avoid this problem, and we are then able to concentrate our
computational efforts on the difficult part of the problem. Also as we have seen with
TSVQ. a data set which has a large amount of structure makes the FSCL algorithm
converge more quickly. The CVQ method accomplishes this by splitting th.- original
data set into shade and edge blocks which further improves convergence speed. As
we can see in Figure 4.28, CVQ has a huge computational advantage over FSVQ as

well as better performance for large codebooks.

56

TABLE 4.3: Number of Codebooks Required

Codebooks |

[T R | Block Size | Codelyook Size | TSVQ | MSVQ |
T2.2) 7 % 2 16 5 3
13.2) 3 %2 61 9 3
((333)] 3x3 512 3 3

TABLE 4.4: Code Vector Storage Requirements

Code Vectors
R Block Size | Codebook Size | FSVQ | TSVQ | MSVQ
22 | 2x2 16 16 20 3
(3,3) 3 x2 64 64 72 16
(3,3,3) 3 x3 512 512 584 24

TABLE 4.5: Channel Load of Codebook Transmission (bits/pixel)

Channel Load ({bits/pixel)
R Block Size | Codebook Size | FSVQ | TSVQ | MSVQ
(2,2) 2 x2 16 0.008 | 0.010 0.004
33 | 3x2 64 0.047 | 0053 | 0012
(3,3,3) 3 x3 512 0.563 | 0.642 0.026

57

TABLE 4.6: Example Codebook

Codeword | Pixel 1 | Pixel 2 | Pixel 3 | Pixel 4
1 159 167 186 193
2 200 200 202 202
3 104 105 123 127
1 36 86 87 87 |
3 223 223 224 223
6 133 126 107 104
7 217 217 217 217
8 137 137 141 141
9 208 209 209 209
10 231 231 231 231
11 173 174 175 175
12 160 159 156 156
13 99 99 99 99
14 240 240 240 240
15 189 189 190 190
16 204 199 177 166

58

MSE

140

120+

100

Performance vs. Block Size

MSVQ

+

20
4

Block Size in Pixels

Figure 4.27 Performance vs. Block Size

59

12

Number of Training Passes

Computational Cost

Block Size in Pixels

Figure 4.28 Computational Cost

60

V. CONCLUSIONS

[this thesis we examined some existing algorithms to implement vector quan-
“;zation using neural networks. We also applied three techniques to improve pertor-
mance and reduce computational cost. In the previous chapter we presented each
technique separately. Here we will compare the relative performance of each of the
rhiree algorithms. Since each algorithm has its strengths and weaknesses. we also
make suggestions about the likely situations where each of these techniques may be
appropriate.

First let us discuss image reproduction qualitv. It can seen from Figure 4.27
that for a given “lock size. FSVQ, TSVQ. and CVQ all offer a similar level of perfor-
mance in a mean square sense. while MSVQ performs noticeably worse. To compare
pertormance in a subjective sense. we present the best results obtained for each tech-
nique in the following figures. Figure 5.1 shows the FSVQ algorithm using a 3 « 3
Block. Figure 5.2 shows TSVQ using a 3 x 3 block. Figure 5.3 shows MSVQ using
a 4+ x 3 Block, and Figure 5.4 shows CVQ using a 3 x 3 Block. Here we see that
('V'QQ has a small advantage over FSVQ and TSVQ in a subjective sense. and MSVQ
i3 again noticeably worse.

Now we examine the issue of computational cost. We can see from Figure 1.28
that for a given block size, FSVQ has the highest computational cost. TSV'Q is the
next highest, and CVQ and MSVQ have very similar and much smaller computational
vosts. Perhaps a better way to rate the computational cost is to relate it to perfor-
mance. Figure 5.5 shows the relationship between cost and performance for each test
case performed. Algorithms that are most desirable are represented by points in the

tower left portion of the graph. We can see that the best combination of reproduction

61

Figure 5.1 FSVQ Figure 5.2 TSVQ

Figure 5.3 MSVQ Figure 5.4 CVQ

62

Number of Training Passes

Computational Cost vs. Performance

180F
160 F

140+

T

120

100 -

30+

T

60

40t

20+

T T T —r

+=FSVQ
x=TSVQ
0=MSVQ
*=CVQ

—1

40 60 80 100 120
MSE

Figure 5.5 Computational Cost vs. Performance

63

= _ . .

¢nalitv and computational cost is given by the CVQ algorithm.

Although C'VQ offers the best reproduction quality even when computational
co~t i~ considered. the other two algorithms presented have advantages of their own.
Borle MSVQ and TSVQ offer a huge savings in the number of processing elements
tequired because of the linear structure each displays. Thus for a hardware imple-
mentation these two techniques should be considered. Also we have seen that for
laree code book sizes the load on the channel due to code book transmission becomes
significant. So if our application requires an extremely large code book the MSVQ
algorithm must be considered as it is able to form a large code book with very little
load on the channel (See Table 4.3).

This research has shown that neural networks can be very effective in the im-
plementation of vector quantization. With the application of algorithms such as
('VQ. TSVQ. and MSVQ. we can improve the performance of neural network vector

quantizers and make application of the vector quantization technique more practical.

A. ADDITIONAL WORK

Research is planned in the area of adaptive filters in an effort to improve the
convergence speed of the FSCL algorithm. In addition. it is planned to investigate
other current vector quantization techniques and determine if neural network vector
quantizers can be improved by their application. After these steps are completed. an
effort to combine several of the techniques chosen will be conducted in the hope of
further improving overall performance. Finally, we plan to apply the techniques in

this thesis to the coding of speech data.

64

APPENDIX A: PROGRAM DETAILS

[his appendix contains the program flowcharts and listings for each of the
aleorithms in the thesis. Figures A.1-A.4 show the flowcharts. and the program

fistings follow.

65

Image In

row format

Y

imgcont m

image in
vector format

-

—-

user
nput

—e CHINIE2M p——] fSCIM

loop untii
convergence

!

mse
history

mse.m

e i eed
codebook

Y {

mse -

codem

coded 1mage
N vector format

imgecon3 m

l

coded 1mage
Inrow format

Figure A.1 Basic FSCL Algorithm

66

1mage in row format

1

imgcontl m
ser image nvector fcrmat
use comitem pew——t ——
mnput
fsclm
Y
mse m
* -
first level Y
codebook
tsort.m
tscbh.m
* data subsets
fscim — fsclm
v A i A
msem mse m
—»— second level codebooks g
. —
a } 4 l i -
’ tscodem

‘ coded image n vector firmat

imgcon3 m

J

coded 1mage in row format

Figure A.2 Tree Search Algorithm

67

-

image inrow format

imgcont m

xmagetm vector format

| I

User—’:bmlth—'— fsclm
nput
R

mse.m

B |

mssortm

error data set
-l

Y
Y fscim

msem

second level
codebook

mscode m m—

‘codeo mage in vector format

imgcon3.m

'

coded 1mage inrow format

Figure A.3 Multi Stage Algorithm

68

image 1n
row farmat

'

classm imgcont n
edge data
subset shade fmage 1N
data Vector
+ cbinit2m subset forma"
———etlf—
chintt2mpP®|fsci.m fsclm
mse.m mse.m
edge codebook hpde codebook

'F_"_' -

codem

ctor format

7 coded image
inve

imgcon3.m

'

coded image

inrow format

Figure A.4 Classification Algorithm

69

funcLion x=imgconl(y)

% program to convert an array of imaqge data into vector format using
% biocks of arbitrary size

% 1nput variable y = subject image in row format

% output variable x = subject image in vector format

% \ncal variables N = vector which stores the dimensions of y
n2 = height of desired block input by user
nl - width of block input by user

nla » number of blocks to process in horizontal cirection
n2a = number of blocks to process in vertical direction

k = index to track number of blocks processed

11 = vertical placekeeper in Subject image

jl = horizontal placekeeper in subject image

: = temporary storage for desired block

N=sizely); %t initialize dimensions of input image
n2=input {' height of blnack ') % get height og block from user
nl=input (‘width of block ") % get width of block from user
nla=floori{N(l)/nl); % find } of blocks to process horiz.
n2a=floor(N(2)/n2); § find § of blocks to process vertic.
x=zeros(nl*n2,nla‘*n2a); % initialize output
for i=l:n2a ¥ main loop: move vertically in image
il1=(i-1)*n2+1 % set vertical placekeeper
for j=l:nla % inner loop: move horizontally in image
k=(i-1)*nla+j; % track number of blocks processed
Jjl=(j-1)*nlel; % set horizontal placekeeper
z=y(il:il+4n2-1, jl:jl+nl-1); % get desired block from image
x(:, k)=z () % make conversion from block to vector
end

end

70

Sep 20 11:03 1991 «cbinit2.m Page 1

function {w,uj=cbinit?2(x)
% proqgram to iunitialize the code book
% i1nput variable x = data sel in vecLor f[oimat

% ontpur variabie w = initial code hook
% u = 1nitialized friquency vector

¥ local variables N = desired number of code words
% Nx = number of data vectors

% this program initializes the codebook by randomly selecting data vectors from the
¥ subject data set. It also sets up hte 1nitial frequency vector for the codeboock
% with all values initialized to 1.

N=input (' number of code words)

rand (" uniform’)
Nx=max{size(x});
for 1=1:N
wi:,1)=x{:,ceil (Nx*rand(1})));
end
u=ones (1, N);

function

L]
%
k]
L
%
%
%
13
]
]
%
%
%
%
]
3
3
3
3

tnput variables x

w
u

cutput varlables w

u

local vatiables nx

Nx
N
y
d
md

1w

ep

% weight matrix, w,
% routine.

nx=min{size(x));
Hx-max{sirze(x)),
N=size(w);
y=ones{(1,N(2));

for

k=] :MNx

de=sum{{x{:,k)*y-w)."2);

d-d. *u;
imd, iw]=man (d);

ep=0.01*expt-uliw)/10000);

wli,iw)=aw(:, iw) tep* (x(:,k)-w(:,1w));

uliw)=u(iw) +1;

{w,ul=fscl(x,w,u)

program to implement frequency sensitive competitive learning

subject data set arranged into vectors of appropriate size
exisling weight malrix
existing win {requency vector

updated woight matrix
updated win {iequency vector

size n{ data wvectors

number of data vectors Caution: Nx must be > ax

vector containing the size and number of weight vectors in w
ones vector used Lo set up comparison of distances

vector which stotes the distance for each code vector

the minimum distance contained in d

the index of code vector with minimum distance

learning rate

This program conducts a single pass through data set x using the FSCL algorithm. The
and win frequency vector, u, are updated and passed back to the calling

initialize size of data vector
initialize number of data vectors
initialize dimensions of weight matrix
initialize ones vector

- P P o

main loop: perform cnce for each data vector

calculate distance for each code vector

apply fairness function to distance

find minimem distance

determine learning rate for neares.

code vector

update weight vector for nearest code vector

update number of wins for nearest code vector

LA K K N I Y 4

72

Sep 20 11:04 1991 mse.m Page 1

funcrion m=mse {x, w, m)

% prodqram Lo measure maan square error of codebook

% input variaules x = subject dala set arranged into vectors of appropriate size

% w = welqht matrix of codebock to pe measured

3 m = record of mse {or previous versions of code book

3

% output variable m = updated record of mse megsurements

%

% loca! variables tix = number of data vectors Caution: NX must be > nx

L] N = vector containing the size and number of weight vectors in w

] y = ones vector used to set up comparison of distances

% 4 = vector which stores the distance for each code vector

3 msol = accumulator for current mse

% this program makes 3 single pass through the data set in order to measure the mse.

% the mse 15 then appended to an existing vector, m, which has the mse record for

¥ each iteration of the codebook

N=size{w,; % initalize size of weight matrix

tix=max (size(x}}; Y initialize number of data vectors

msel-0; % initialize mse accumulator

y=ones{l,N(2)); % initialize ones matrix

for k=1:Mx % main loop : execute once for each data vector
d=sum((xi:, k) y-w)."2); % calculate for each weight vector
mselemsel+min(d); % increment mse accumulator

end

msel=msel/(Nx*N(1)}; ¥ normalize mse

m={m, msel); % append neWw mse value to previous recoru

73

function {[z,mse]=code(x,w)

Sep 20 11:03 1991 cbinit?2.m Page 1

function {w,uj=cbinitl{x)
% program to initialize the code book
% input variable x = data set in vector format

% output variable w = initial code book
% u initialized frrquency vector

% local variables N = desired number oi code words
% Nx = number of data vectors

$ this program initializes the codebook by randomly selecting data vectors from the
subject data set. It also sets up hte initial frequency vector for the codebook
% with all values initialized to 1.

o»

N=input (" number of code words)i

rand(‘uniform’)
Nx=max (size{x));
for i=1:N
wii,i)=x{:,ceil (Nx*rand(1l})));
end
u=ones (1, N);

74

-

function x=imgconi(y)

% proqram to convert an image in vector format to an image in row
3 (ormat with an arbitrary vector size

¥ input variable y - subject image

in vectar format

% output variable x = subject image in row format

% local variables N = vector which stores the dimensions of y
n2 = height nf block input by user
nl = width of block input by user
n3 = size of desired cutput image

nla = number of blocks to process in horizontal direction
n2a = number of blocks to process in vertical direction

k = index to track number of blocks processed
il = vertical placekeeper in subject image

jl = horizontal placekeeper in subject image
z = temporary storage for desired block

N=sizely);
n2=input {"height of block)i
nl=input ('width of block ")

nl=input (' s1ze of output image
nla=floor{n3/nl);
n2a=floor(n3/n2);
x=zeros{nl, nl};
for i=l:n2a
Pl=(i~1)*n2+1
for j=l:nla
k=(i-1)*nlat+j;
J1=tj~1)*nli+};
z=zeros(n2,nl);
for I=1:n1
m=(1-1)*n2+1;
z{:, D=yim:m+n2-1,%);
end
x{1l:11+n2-1, jl:jl+nl~1)=z;
end
end

WP W R R AP P A P

-

initialize dimensions of input image
get height of block from user
get width of block from user

")i % get desired output image size

find § of blocks in vert. direction
find t of blocks in horiz. direction
initialize output image

main loop : move wvertically

set vertical placekeeper

inner loop : move horizontally
update number of blocks processed
set horizontal placekeeper
initaiize temporary storage

loop to convert vector to block
find section of vector to process
get segment of vector

put completed block into image

75

Sep 20 11:06 1991 tscb2.m Page |

¥ program to initialize the codebook for TSVQ

¥} variaples x!1,x2, ... = input data setLs in vector form

13 wl,w2, ... = initi1al code books

L] ul,u2, ... = 1initialized frequency vectors

% H = desired number of code words

3 Hx = number of data vectors in data set being processed

n=npnt (*size of input vector) % get size of input vector
N=1nput (" number of codewords Y t get desired number of codewords
nb=input ("number of branches in tree ’); % get number of branches in tree

¥ this program constructs the code book initialization for TSVQ by randomly
% chosing input data vectors from each data set

rand ("uniform’) % set up random number generator

for p=l:nb % main loop execute once for each branch of tree
eval{['Nx=size(x’, int2stec(p),’); ' |); % get size of current data set
Nx=Nx(2);
for q=1:H % 1nner loop : choose N random vectors from data set
m=ceil (Nx*rand(1,1)); %t select random number
eval ([“w',intZstr(p),’ (:,q)=x’,int2strip), (:,m);'])
t place selected vector in appropriate code book
end
eval({’"u’,int2str(p), =ones(1,N);"]); % initialize frequency counter
eval({'m’,int2strip), = };’}); % initialize mse history
end

76

Sep

% p

% v
3
%
%
)
L
3
]
%
%

LI
N=5
Nx-
mse

y=o

for

end

for

end

for

end

20 11:05 1991 «tsort.m Fage 1

rogram to sort vector for tree searched code

variavies MHx - number of data vectors Caution: Nx must be > nx
N = vector containing the size and number of wejght vectors in w
y = ones vector used to set up cemparison of distances
4 = vector which stotes the distance for each code vector
md = minimum distance from data vector to a code word
iw = index of minimum distance in d

x = subject data set arranqgad into vectors of appropriate size
w = weight matrix of codebook to be used for sorting

xl, %2, ... = data sets of vectors for use in next stage

count = vector to track size of output data sets

his program performs the sorting of hte input data set for use by the sceond % level of t
tzelw); ¥ initialize dimensions of w

max{sizelx)); % initialize number of input vectors

=0; % initialize mse

nas{l,N(2)); % initialize ones vector

k=1:N{(2) % this loops initializes the output data sets
aval(l’'x',int2str{k), ' =zeros(N{1),.Nx/4);'));

count (k) =0; % initialize size of output data sets

k=1:Nx ¥ main loop : execute once for each input vector
d=sum({x{:, k) *y~-w). ~2;; ¥ calculate distances for each code vector

{md, iwl=min(d); % find closest code vector

count (iw) =count (iw) +1; % update size of output data set chosen

eval ([’ x", int2strliw),’ (:,count (iw))=x(:,k);"]); % update output data set
if rem(k,1000)==0, k, end % update progress to screen

k=1:N{(2) $ this loop truncates the output data sets to eliminate
% the unused portion of the allocated space
eval({["x',int2str(k), "=x’,int2str(k),’ (:,1:count(k)); [};

77

Sep 20 11:05 1991 cscode.m Page 1

%
3
3
%
%
%
%
%
%
%
%
%
%
¥
%
¥

)
3

N=size(wl);
Nx=max (size(x));

y=ones(1,N{2));

program to ccde an image f{or tsvqg

variaples x = data set with image in vector format
w = waight matrix for vector quantizer at first level
wl,w2, ... = weight matrices for vector quantizer at second level
wa = weight matrix chosen for use at second level
: = approximate image produced by coding in vector format
mse = mean square error of approximgtion, z
N = vector containing size and number of weight vectors in w
Nx = number of data vectors
y = ones vector used to set up comparison of distances
d = vector which stores the distance for each code vector
2 = vector distances [or code book at second level
md = the minimum distance contained in d
md2 = the minimum distance contained in d2
iw = the index of the code vector with minimum distance
iw2 = index of closest code vector in level two

this progrm performs coding for a two level TSVQ. The input and output
images are both in vector format

initialize dimensions of w
initialize number of input data vectors

initialize ones vector

%
%

mse=0; % initialize mse
%

z=zeros (N(1),Nx);

initialize output image

for k=1:Nx % main loop : execute once for each input vector

d=sum({x{:, k) *y-w).*2); % find distances for code book at first level

{md, iw]=min{(d); % find closest code vector at f .rst level

aval (['wa=w’,int2str(iw),’;’]); % pick weight matrix to be used at level two
d2=sum(({x{:,k})*y-wa)."2); % find distances for code book at level two

{md2, iw2]=min(d2}; t find closest code vector at level two
z{:, k)=wa(:,iw2); %t place approximation in output image
mse=msetsum{ (x{:,k}-z(:,k))})."2); % increment mse
if rem(k,1000)==0, k, end % update progess to screen

end

mse=mse/ (Nx*N{1)}; t normalize mse

78

~y

Sep 20 11:07 1991 mssort.m Page 1

function z=mssort (x, w)

% program to set up multi stage vq
1nput variables x = subjrct data set arranged into vectors of appropriate size
w = weiqght matrix of codebook to be used for sorting

sutput variabie z = data set of error vectors for use in next stage

%

%

%

3

%

% local variables MNx = number of data vectors Cauytion: HNx must be > nx

] N = vector containing the size and number of weight vectors in w
A] y = ones vector used to set up comparison of distances

] d = vector which stores the distance for each code vector

% md = minimum distance from data vector to a code word

% iw = index of minimum distance in d

% this program takes a data set and a code book and performs on pass through each
% data vector, finding the closest code vector and calculating and storing the

% error. This new data set is used for the next stage in Multi Stage Vector

% Quantization.

N=sizelw);

Nx=max {size(x));
y=ones(1,N{2));
z=zeros(MN{1},tx);

initalize nunber and size of weight vectors
initialize number ofdata vectors

initialize ones vector

initialize error data set

P P o o

for k=1:Nx % main loop : execute once for each data vector
d=sum((x(:, k) *y-w)."2}; % cajlulate distance for each code word
{md, iw]=min(d}; % find the minimum distance
2, k)=x(:,k)~wi:,iw}; % calculate and store the error vector
if remi{k, 1000)~=0, k, end % update progress every 1000 data vectors
end

79

S5ep 20 11:08 1991 mscode.m Fage |

{gnction (2, mse]=mscode (x,w,wl)

3 procam Lo code an image [Or ms vy

% 1nput variables x = data et wilh 1mage 1n vector [ormal

% w = weight matrix for vector quantizer at first level

% wl = weight matrix for vector quantizer at second level

% outjput variables z = approximate imange produced by coding in vector format
% mse = mean square error of approximaticn, 12

local variables N = vector containing size and number of weight vectors in w
Nx = numuer of data vectors
x2 = data set containing first level error
y = ones vector used to set up comparison of distances
d = vector which stores the distance for each code vector
d2 = vector distances for code book at second level
md = the minimum distance contained in d
md2 = the minimum distance contained in d2
iw = the index of the code vector with minimum distance
iw2 = index of closest code vector in level two

W P W R P R W N W

% this program performs coding for the MSVQ algorithm. This version is
$ to a two level architecture. The input and output image are both in
$ vector format.

N+size(w); % initialize dimensions of w
Nx=max {size(x)}; % initialize number of data vectors
mse=0; % initialize mse

y=ones(},N(2})}; %t initialize ones vector
z=zeros{N(1),Nx); % initialize out:iyut image

for k=1:Nx
d=sum{{x(:, k) *y-w)."2);

% main loop : execute once for each data vector
%t find distances for first level code book

[md, iw]=min{d); % find closest code vector on first level

x2=x (1, k)~wl:,iw); % form first level error

d2=sum{({x2*y-wl) . "2); % find distances for second level code book
{md2, iw2)=min(d2); $ find closest code vector on second level

z(:, k)=wi(:, iw) +wl(:, iw2}); t form second approximation to input vector
mse=mse+sum{{x(:,k)~z(:,k))."2); % increment mse

if rem(k,1000)==0, k, end]
end

mse=mse/ (Nx*N(1)); % normalize mse

update progress to screen

80

Sep 22 11:20 1991 class2.m Faye 1

tanction {xi,x2f=rlassl(y])

¥ progran to cenvert oan arcay for ouse in classified uvqg

Y anput wvariable y = subjett image 1n row {ormat

¥ cLopat vaviables xl o= vector format array of aedge blocks
xao = vertor format array of shiade blocks

¥ local variabies N o= vactor which stares the dimensinng of y

] ns = height of desired blnck inpat by user

% nl = width of bleack i1nput by user

% nia = number ol blocks to process in horizontal direction
3 nZa = number of blocks 2 process in vertical direction

] i = index to track number of blocks processed

% 1l = vertical placekeeper in subject image

3 J1 = horizontal placekeeper in subject image

% z = array used to evaluate edge detector ratio

%3 this program takes an image in row format applies an edge detector, and
% outputs two data sets in vector fo: 3t. The first data set consists of
% the edge biocks, and the second coi: .sts of the shade pixels.

H=size(y);
n2=input (" height of block R
nl=input ("width of block N
nla=floor(N(1)/nl);
n2a=floor(N(2)/n2);
xl=zeros(nl*n2,nla*n2a);
x2-x1;
count1=0;
count2=0;
for i=l:n2a
il=(i-1)*n2+1
for j=l:nla
k=(i-1)*nlat+j;
jl=(j~1) *nl+1;
z=y(il:il+n2-1, j1:jlenl-1);
zi=z{:});
22 =(z1{1)-21(2)) /max(z1(1),21(2));
22(2)=(z1(1)-21(3))/max(z1(1),21(3)}).;
22(3)={z1(1)-21(A))/max(zl(1),z1(A));
22{M)=(z1(2)-21(3)) /max(z1(2},zL(3));
22(5)=(z1{(2* z1(4))/max(zl(2),21(4}});
22(6)=(21(3 z1(4))/max(zl(3),21(4));
if max(abs(z.)) > 0.4
counti=countl+l;
xl{:, countl)=21;
else
count2=count2+1;
x2(:,count2)=z1;
end
end *
end
xl=x1(:, l:countl);
x2=x2(:, l:count);

81

REFERENCES

A. K. Jain. “Image Data Compression: A Review.” Proceedings of the IEEE. .
RSUR AR N

2 R. M. Grav. ~Vector Quantization.” [EEE ASSP MagazineNol. 1. 4-29. Jan.

Lo

('. F. Shannon. "Coding theorems for a discrete source with a fidelity criterion.”
{RE National Convention Record. Part 4. 142-163. 1959.

- N. P Llovd. ~Least squares quantization in PCM." Bell Laboratories Technical

Note. 1957,
H. Abut (Ed.). "Vector Quantization™. IEEE Press. 72-86. 1990.

. Y. Linde. A. Buzo. and R. M. Gray, “An algorithm for vector quantizer design.”

[L'EE Transactions on Communications. COM-28, 84-95. January 1980.

. D. O'Shaughnessy. “Speech Comimunication”. Addison-Wesley. 313-323. 1937,

. R. P. Lippman. * An Introduction to Computing with Neural Nets.” [EEE {SSP

Magazine. 4-22, April 1987.

). E. Rumelhart. G. E. Hinton, and R. J. Williams. “ Learning Internal Repre-
~entations by Error Propagation.” Parallel Distributed Processing: Erplorations
i the Microstructure of Cognition. Vol 1: Foundations, MIT Press. 1986.

[. Kolionen. ~Self-Organization and Associative Memory.” Spring Verlag. 1984.

. D. DeSieno. * Adding a conscience to competitive learning.” [EEE International

(‘onference on Neural Networks, 1117-1124, 1988.

2. Stanley (. Ahalt. Ashok K. Krishnamurthy, Prakoon Chen. and Douglas E.

Melton. “Competitive Learning Algorithms for Vector Quantization.” .Veural Net-
works, Vol. 3. 277-290. 1990.

Stanlev C. Ahalt, Ashok K. Krishnamurthy. Prakoon Chen. and Douglas E.
\telton. ~“Performance analysis of two image vector quantization techniques.”

[EEE INNS International Joint Conference on Neural Networks. Vol [. 169-175.
180,

. R. M. Gray. "Full Searched and Tree Searched Vector Quantization.” Proceedings

L1 TON2 [(C4SSP. 593-596. Paris. Apr. 1982.

Biing-Hwang Juang. * Multiple Stage Vector Quantization for Speech Coding.”
Proceedings of 1982 [CASSP. 597-600. Paris, Apr. 1982.

. A Gersho and B. Ramamurthi. “Image coding using vector quantization.” Pro-

ceedings of 1982 ICASSP, 428-431. Paris. Apr. 1982.

82

-

0.

INITIAL DISTRIBUTION LIST

Detense Technical Information Center
(:uneron Station
Alexandria. Virginia 22304-6145

Library, Code 32
Naval Postgraduate School
Monterey. (‘alifornia 93943-5002

(‘hairman. Code EC
Department of Electrical and
C'omputer Engineering

Naval Postgraduate School

Monterey, California 93943-5000

Professor Murali Tummala, Code EC/Tu
Department of Electrical and

(‘omputer Engineering

Naval Postgraduate School

Monterey. California 93943-5000

Professor Charles Therrien, Code EC/Ti
Department of Electrical and

Computer Engineering

Naval Postgraduate School

Mouterey. California 93943-5000

Dr. R. Madan (Code 1114SE)
Office of Naval Research
200 North Quincy Street
Arlington. Virginia 22217-5000

Mr. John Hager (Code 7T0E1)

Naval U'ndersea Warfare Engineering Station

Kevport. Washington 98345

83

.\(). Of (‘U[)i("‘\'

2)

~. LT Bruce E. Watkins
<X Jewell Ave.
Pacitic Grove. California 93950

84

